silverlining

python logging模块的死锁问题

Posted at — 5月 1, 2018

某日,在排查线上问题时,在dump线程后发现了一些“诡异”的异常:

  File "/usr/local/lib/python3.5/logging/__init__.py", line 1838, in info
    root.info(msg, *args, **kwargs)
  File "/usr/local/lib/python3.5/logging/__init__.py", line 1271, in info
    Log 'msg % args' with severity 'INFO'.
  File "/usr/local/lib/python3.5/logging/__init__.py", line 1279, in info
    self._log(INFO, msg, args, **kwargs)
  File "/usr/local/lib/python3.5/logging/__init__.py", line 1415, in _log
    self.handle(record)
  File "/usr/local/lib/python3.5/logging/__init__.py", line 1425, in handle
    self.callHandlers(record)
  File "/usr/local/lib/python3.5/logging/__init__.py", line 1487, in callHandlers
    hdlr.handle(record)
  File "/usr/local/lib/python3.5/logging/__init__.py", line 853, in handle
    self.acquire()
  File "/usr/local/lib/python3.5/logging/__init__.py", line 804, in acquire
    self.lock.acquire()

异常的表现是logging模块在打日志的时候卡在了获取锁这个地方,并且一直处于阻塞的状态。众所周知,Python的logging模块是线程安全的,因为logging模块在输出日志时,都要获取一把锁,而这把锁是一把可重入锁,对于不同的线程,在打日志前都要等待这把锁变为可用状态,才能持有这把锁并执行提交逻辑,最典型的例子就像如下所示:

def handle(self, record):
    """
    Conditionally emit the specified logging record.

    Emission depends on filters which may have been added to the handler.
    Wrap the actual emission of the record with acquisition/release of
    the I/O thread lock. Returns whether the filter passed the record for
    emission.
    """
    rv = self.filter(record)
    if rv:
        self.acquire()
        try:
            self.emit(record)
        finally:
            self.release()
    return rv

由上可知,如果说一个线程在获取锁时,另一个线程迟迟没有释放锁,那么这个线程就会一直阻塞在获取锁的这个步骤,但实际上这种情况基本不可能出现,因为输出日志是一个十分快的过程,不需要耗费太多时间。

因为环境是在多进程+多线程环境下运行,所以有理由怀疑问题与并发时的竞态有关,于是先写一个多进程的例子:

import logging
import multiprocessing
import sys
from time import sleep

class CustomStreamHandler(logging.StreamHandler):
    def emit(self, record):
        sleep(0.1)
        super(CustomStreamHandler, self).emit(record)

root = logging.getLogger()
root.setLevel(logging.DEBUG)
root.addHandler(CustomStreamHandler(sys.stdout))

def g():
    logging.info(2)
    logging.info(2)

def f():
    logging.info(1)
    logging.info(1)

p = multiprocessing.Process(target=f)
p.start()
g()

主进程起了个新进程,调用f函数,打印日志“2”,接着并行调用g函数,打印日志“1”,为了看清楚问题,在logging handler获取锁后会sleep 0.1秒。

可以看到输出并没有问题:

1
2
1
2

现在做一些修改,把主线程的g函数的调用修改为在主进程新建一个线程来执行:

import logging
import multiprocessing
import sys
from time import sleep

class CustomStreamHandler(logging.StreamHandler):
    def emit(self, record):
        sleep(0.1)
        super(CustomStreamHandler, self).emit(record)

root = logging.getLogger()
root.setLevel(logging.DEBUG)
root.addHandler(CustomStreamHandler(sys.stdout))

def g():
    logging.info(2)
    logging.info(2)

def f():
    logging.info(1)
    logging.info(1)

import threading
t = threading.Thread(target=g)
p = multiprocessing.Process(target=f)
t.start()
p.start()

执行输出,在程序输出两个2之后就立马阻塞住了:

2
2
阻塞...

为什么两个相似的例子中会出现不一样的结果呢?

仔细观察,在这个例子中,线程先于进程开始调用,那么假设线程先执行,换而言之这时候root logger的锁便被线程池持有了,按照逻辑,线程马上进入睡眠0.1秒,而进程这个时候也想要输出日志,它也想要获取这把锁,却一直获取不到,甚至直到线程退出了进程也一直在阻塞着。

这一切表象背后的实际原因,实际上可以从上面推敲出,当进程被fork时,线程实际上已经持出这把锁了,所以说子进程在复制地址空间后它认为这把锁还在占用状态,于是就一直等着,但它不知道这把锁永远不会被释放了…

而为什么在前一个例子中却没有任何异常呢?事实上,再根据之前说的,这把锁时一把可重入锁(RLock),它是属于线程级别的锁,即是这把锁在哪个线程acquire就一定要在哪个线程被release,再来看第一个例子,虽然主进程中起了一个子进程,但实际上这两个进程所处于的线程都是一样的(主线程),而第二个例子中,f和g函数是处于完全不同的线程当中,就是f想要释放掉这把锁,它也无能为力,因为这把锁由g创建,只能被g释放,并且由于线程相异,g没有办法把锁释放。

如果做一个投机取巧,把锁替换掉会怎样呢:

import logging
import multiprocessing
import sys
from time import sleep
import threading

class CustomStreamHandler(logging.StreamHandler):
    def emit(self, record):
        sleep(0.1)
        super(CustomStreamHandler, self).emit(record)

root = logging.getLogger()
root.setLevel(logging.DEBUG)
root.addHandler(CustomStreamHandler(sys.stdout))

def g():
    print("g", threading.get_ident())
    handler = logging.getLogger().handlers[0]
    logging.info(2)
    logging.info(2)
    print(id(handler))
    print(id(handler.lock))

def f():
    print("f", threading.get_ident())
    handler = logging.getLogger().handlers[0]
    handler.createLock()
    logging.info(1)
    logging.info(1)
    print(id(handler))
    print(id(handler.lock))

import threading
print("main", threading.get_ident())
p = multiprocessing.Process(target=f)
t = threading.Thread(target=g)
t.start()
p.start()

执行这段代码,输出:

main 140735977362240
g 123145405829120
f 140735977362240
2
1
2
1
4353914808
4353914808
4354039648
4349383520

会发现不会有任何阻塞了,因为在子进程中直接把这把状态为locked的锁替换掉了(一把全新的RLock),这时候输出handler和lock的地址,发现两个函数中的handler地址都是同一个,而lock已经是两个不一样的了(Copy-On-Write)。

Solution

针对这个问题,Google很早之前已经给了一个解决方案:python-atfork

其主要思路是:对os.fork做一个monkeypatch,在fork调用时可触发三个自定义的hook:

def atfork(prepare=None, parent=None, child=None):

其中里面还给出了针对logging模块死锁问题的一个workaround:

def fix_logging_module():
    logging = sys.modules.get('logging')
    # Prevent fixing multiple times as that would cause a deadlock.
    if logging and getattr(logging, 'fixed_for_atfork', None):
        return
    if logging:
        warnings.warn('logging module already imported before fixup.')
    import logging
    if logging.getLogger().handlers:
        # We could register each lock with atfork for these handlers but if
        # these exist, other loggers or not yet added handlers could as well.
        # Its safer to insist that this fix is applied before logging has been
        # configured.
        raise Error('logging handlers already registered.')

    logging._acquireLock()
    try:
        def fork_safe_createLock(self):
            self._orig_createLock()
            atfork.atfork(self.lock.acquire,
                          self.lock.release, self.lock.release)

        # Fix the logging.Handler lock (a major source of deadlocks).
        logging.Handler._orig_createLock = logging.Handler.createLock
        logging.Handler.createLock = fork_safe_createLock

        # Fix the module level lock.
        atfork.atfork(logging._acquireLock,
                      logging._releaseLock, logging._releaseLock)

        logging.fixed_for_atfork = True
    finally:
        logging._releaseLock()

确保了在fork子进程之后,锁是处于release状态的。

而在Python 3.7版本之后,官方也给出了标准库的方法实现相同的功能:

os.register_at_fork(*, before=None, after_in_parent=None, after_in_child=None)

Register callables to be executed when a new child process is forked using os.fork() or similar process cloning APIs. The parameters are optional and keyword-only. Each specifies a different call point.

 - before is a function called before forking a child process.
 - after_in_parent is a function called from the parent process after forking a child process.
 - after_in_child is a function called from the child process.